
SodaLib: a data sonification framework for
creative coding environments

Agoston Nagy
Moholy Nagy University of Design and Arts

Zugligeti út 9
Budapest, Hungary, 1121

stc@binaura.net

Abstract

This paper introduces SodaLib, a sonification
framework made for different programming
languages [1]. It’s aim is to let creative practitioners
turn data into sound as easily as possible without
interfering their regular workflow and without the
need of advanced musical knowledge. SodaLib
proposes generic and flexible ways of working with
many types of data representations, including
measurements by sensors, real-time data feeds,
pre-recorded data, or even game and other
interaction-driven temporal events. The sound
engine is made with Pure Data using LibPd [2] and
it can be embedded into applications running on
many operating systems from desktop to mobile,
including iOS, Android, Raspberry (ARM linux).

Keywords

Data Sonification, LibPd, Creative Applications,
Extending Pd

1. Introduction

In the ever-growing area of data driven interfaces
(embedded systems, social activities), it becomes
more important to have effective methods to
analyze complex data sets, observing them from
different perspectives, understanding their features
and dimensions, accessing, interpreting and
mapping them in meaningful ways. With SodaLib, it
is easy to map live data (sensors, web apis, etc),
large, prerecorded datasets (tables, logs, excel files),
or even unusual sources (images, 3D environments)
to recognizable audible patterns through a set of
sonification methods, including parameter
mapping and event based sonification [3].

SodaLib is an open source, cross platform,
multipurpose sonification tool for designers,
programmers and creative practitioners.

2. Motivation

A personal motivation for creating this library
is coming from the discussions of different
workshops and courses on creative coding
practice, where sound is used in novel ways
for communication [4]. By discussing topics
on sound, game engines, sonification, VR
environments, data transmissions using
different sensor systems, it turned out that
there is a general need for a multipurpose
tool which can be embedded with a few lines
of code into the regular workflow of people
coming from different backgrounds, letting
them focus on application creation combined
with creative sound production.

Another, more general need for a high level
framework is the lack of well defined
structures for representing data with sounds.
While visualization has a great and extensive
history of representing data through lines,
shapes, colors based on cognitive and gestalt
elements that are rooted in our visual
perception [5], sonification lacks this
common language structure and it is deeply
overwhelmed with musical concepts and/or
advanced synthesis systems that are hard to
understand for people who primarily work
with interaction and data instead of
producing sounds. SodaLib provides an easy
way to sonify data from one dimensional
discrete events to multidimensional,
continuous data streams with just a few lines
of code.

The framework does not follow the tradition
of most available sound libraries that are
about to build sequencers, soft-synth like
studio equipments and similar tools that are
based on musical symbolic structures.
Instead, the system is dealing with data as it

is: flexible, neutral entities in multidimensional
contexts. These elements can be sonified in similar
ways among all dimensions, regardless of the
underlying sound engine construction. The
dimensions can be selected based on the relevant
contexts of the data, they can be addressed using
interchangable values, such as shift in pitch, power
in volume and position in pan (including binaural
3D positioning), depth as reverberation size, etc.
The dimensions of the system can be extended
very easily if needed by adding custom generators
and/or mapping functions. However, at the
moment, these few parameters seem to fit the
basic needs when dealing with human cognitive
efforts and the regular perception conditions of the
mind.

3. LibPd

SodaLib’s core functions are written in Pure Data
(vanilla), it is fully compatible with LibPd. LibPd is
platform agnostic in terms that it does not rely on
any audio API calls directly, instead it can be
embedded into many environments with a few
binding functions to access low level API calls. It can
be easily adapted into many creative coding
environments, including c++, java, python, targeting
platforms from desktop to iOS, Android, Raspberry
PI or server based applications.

Fig. 1: Layers of LibPd. From the book Making
Musical Apps by Peter Brinkmann.

Chapter 4, fig. 4-1

When working with different creative coding
frameworks within these environments, one can
access and use the core Soda objects through a
thin, streamlined language specific interface layer,
without the need to know how to use Pure Data
itself or things like synthesis and musical

structures. Instead, users can stay with their
preferred environment, keeping focus on
application creation: representing data and
designing interaction.

4. Implementation

4.1 Architecture of the sound engine

SodaLib consists of a sound engine that is
written in Pure Data and a few utility
functions that are available within the
application code. The Pure Data part is a set
of vanilla abstractions that are divided into
some utility functions and building blocks.
These blocks are dynamically generated
sound creators. At the moment, polyphonic
sampl ing , synthes is w i th bas ic , yet
extendable waveforms and a noise filtering
block have been implemented, since these
can be applied well for different type of data
representations. Please refer to the examples
for more on which sound block is best for
what type of data.

Fig. 2: Part of SodaLib’s main.pd patch. Lists
received from the client code are interpreted as

object creation arguments to Pd. Each object
can be addressed and manipulated during

runtime, routing is based on it’s name

The internal, flexible modularity is made
possible by dynamic patching. This means,
the building blocks are generated and saved
on the fly, the interconnections between the

different elements are made without chords, they
are based on a simple internal addressing system,
where each dynamically generated abstraction can
be addressed via it’s name that it has got during
creation time.

The benefit of this concept is that the objects can
be created and addressed directly from the
application code, which is completely different from
the sound generator code. This idea is based on the
idea of libPd, where values can be sent to the
sound engine via messages: if a function that sends
data to libPd has a receiving pair, the data can be
processed within LibPd.

SodaLib extends the concept of this system to a
more abstract level: the readymade, complex
sound rendering objects can be created via
simplified message packages that are received in
Pure Data.

Fig. 3: Each Soda Object in the application side has a
corresponding sound object in Pd. Modifying

parameters of an object in the application code
affects directly its sound generator in the Pd side.

4.2 Binding functions and object management
in different languages

Since the messages addressed to the sound
generators can be accessed via simple lists on the
Pd side, the framework has some binding functions
on the application side. All these functions are
acting as a communication layer that can take

some parameters, make a list from them and
forward it to the sound engine. The code is
taking care of the already existing Soda
objects beyond these functions: when
generating an instance, each object is put
into an easily addressable data container
(HashMap in Java, Map in C++) where objects
can be addressed as key / value pairs. Keys
are the names of the objects and the values
are the referred objects themselves. This
comes really handy when working with
multiple objects at once. For example, if
someone has a larger array of data, it is easy
to generate a sound object for each data
po int in the array and address i ts
corresponding sound object based on the
index of the data in the array.

4.3 Example application code
Creating and manipulating custom sound
objects can be made with just a few lines of
code. While the following examples are taken
from the syntax of C++ (OpenFrameworks
[6]) , similar functions and container
datatypes can be used with other coding
frameworks, such as Java (Processing),
Python, Swift, C# (Unity), etc. In the first
example, we create a custom polyphonic
sampler object and change its pitch. First,
initialize Sodalib. This function creates the
sound engine and loads the main puredata
patch to the system:

soda.init();

Then, create a sound generator, with the
name mySample, loading the file sound.wav,
with polyphony of 10. This last parameter is
depending on the loaded patch type, it can
have different meaning when making synths
or other generator objects.

soda.createSampler("mySample","sounds/
sound.wav",10);

Later on, when the program runs, the sound
object can be manipulated by the following
code:

soda.set("mySample")->shift(0.5)
->play();

Here, the shift value of the object is modified.
1 is original speed, 0.5 is half speed, etc.

A more interesting example would be to create
several objects and control them based on
incoming data values. Let’s create a lot of soda
objects now, this time some sonic texture
generators

for(int i=0; i<100; i++) {
soda.createTexture("soda-" +
ofToString(i),60);

soda.set("soda-" + ofToString(i))
->shift(i/100);

}

Now, we have 100 objects. These are generating
noise with a bandpass filter (with a bandwidth of 60
Hz). Notice that we are using the i integer for
naming and accessing our objects. This integer is
parsed to a string using the ofToString() function. By
changing their shift parameter after creation, each
object will have different filter coefficents, that goes
from 0 – 1. In SodaLib, ideally all function
parameters should be between 0 – 1. This range is
mapped to meaningful values in the sound objects.
Volume goes between 0 (minimum) to 1 (maximum
value), such as pan from 0 (left) to 1 (right), filter
coefficient goes from 0 (0 Hz) to 1 (20 KHz) etc. This
concept can be strange from a musical point of
view at first glance, but this pattern is effective for
keeping the parameter dimensions interchangeable
and flexible.

We can access and manipulate any of the created
objects by referring to their names. We can do it
individually, say if we would like to access and
manipulate only one object from our 100 instances:

soda.set("soda-42")->volume(1)->play();

Since the set() function returns a soda object,
different parameters can be modified at the same
time by making chains of the parameters, like

soda.set("soda-42")->volume(1)->pan(0.2)
->shift(2)->play();

Of course, we can set all of the objects together at
once, based on existing values in an array or any
data type. It’s also possible to just loop through
them and create different random pitches for them
using another for loop:

for(int i=0; i< 100; i++) {
soda.set("soda-" +
ofToString(i))
->volume(ofRandom(1))->play();

}

There is another useful feature of the lib that
can be appl ied for gaming and VR
development. When a pan() function is called
on an object, the type of the sound rendering
is depending on the number of function
arguments. If it has only one, the panning is
done in a traditional, stereo left/right
manner. However , by passing three
parameters, the position of the sound can be
controlled in three dimensions, by passing
the azimuth, elevation and distance to the
desired sound origin. This binaural sound
positioning is using the [earplug~] external [7]
for the math and modelling, and it can be
really effective when developing games or
360° animation scenes.

5. Conclusion

SodaLib is a contribution for creative
practitioners who are interested in making all
type of realtime applications that involve
sound generation without the need to know
sound programming and/or advanced
musical concepts. It can be used for very
quick rapid prototyping, but since it is
completely embeddable, it can also be used
to target different professional digital
publishing platforms [8]. Since data driven
sound will be more common in the era of
c o n n e c t e d d e v i c e s a n d e m b e d d e d
technology, the relevance for creating such
frameworks is evident.

It can also help in teaching the concepts of
interactive sound, visual sound instruments
[9] and different techniques of sonification.
On one hand, attention of newcomers from
other creative disciplines and creative coding
frameworks can be aroused to the directions
of Pure Data and lower level DSP techniques,
on the other hand, experienced pd-ers can
learn how to build applications, publish their
works in forms of different digital media,
apart f rom the performance s tage ,
installations or regular music production
activities [10].

Last, but not least, a long-term, interesting topic is
of course the emerging field of the theory and
practice of sonification. While visualisation has its
own literacy and well defined concepts with
practical building blocks, sonification lacks most of
these. With such tools, it would be easier to
m a i n t a i n d i s c u s s i o n s o n t h e c o g n i t i v e ,
psychoacoustical aspects of sounds that are
representing data: which types of sonic structures
are describing specific datasets more effectively?

6. Acknowledgements

Thank you for all the developers of Pure Data &
LibPd, including Peter Brinkmann, Dan Wilcox and
others, dynamic patching ideas of IOhannes
Zmoelnig, the RJDJ crew and many others for their
effort in the making, Gábor Papp, Bence Samu for
helping in and discussing tons of interesting
concepts, Réka Majsai, Adam Somlai-Fischer, Bill
Manaris for having such inspiring discussions
around and beyond the topic.

References

[1] https://github.com/stc/ofxSodaLib
(implementation for OpenFrameworks)

[2] Brinkmann, Peter et al: Embedding Pure
Data with LibPd. PdCon11:
https://www.uni-
weimar.de/medien/wiki/images/Embeddin
g_Pure_Data_with_libpd.pdf

[3] Hermann, Thomas et al: Sonification
Handbook. Logos Publishing Hous, Berlin,
2011 http://sonification.de/handbook/

[4] Sonic Instruments Workshop, ICAD, ISEA,
2015 http://www.binaura.net/stc/ws/isea/

[5] Fry, Ben: Visualizing Data. O’Reilly, 2007
[6] http://openframeworks.cc/
[7] Earplug External, a binaural filter based on

KEMAR impulse measurement for Pd
https://puredata.info/downloads/earplug

[8] Brinkmann, Peter: Making Musical Apps.
O’Reilly, 2012

[9] Nagy, Agoston: Visual Sound Instruments
(Thesis), MOME, 2014

[10] Steiner, Hans Christof: Build your own
instrument with Pd. In: BangBook, pd-graz,
2006 https://puredata.info/groups/pd-
graz/label/book/bangbook.pdf

https://github.com/stc/ofxSodaLib
https://puredata.info/groups/pd-graz/label/book/bangbook.pdf
https://puredata.info/groups/pd-graz/label/book/bangbook.pdf
https://puredata.info/downloads/earplug
http://openframeworks.cc/
http://www.binaura.net/stc/ws/isea/
http://sonification.de/handbook/
https://www.uni-weimar.de/medien/wiki/images/Embedding_Pure_Data_with_libpd.pdf
https://www.uni-weimar.de/medien/wiki/images/Embedding_Pure_Data_with_libpd.pdf
https://www.uni-weimar.de/medien/wiki/images/Embedding_Pure_Data_with_libpd.pdf

	1. Introduction
	3. LibPd
	4. Implementation
	5. Conclusion
	6. Acknowledgements

